

Lecture 3: Matrix Algebra for Geographers

Structure

- Matrix calculation Basics
- Complex numbers

Matrix - Basics

- **7** Definition:
 - → Matrix: rectangular array of numbers arranged in m rows and n columns
 - → Vector: matrix with 1 row or 1 column
- - \neg Row vector $\mathbf{x'} = [x_1 ... x_n]$

Matrix - Basics

- **→** Transposed matrix A^T
 - → Matrix is mirrored at the main diagonal.

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{n1} & \cdots & \mathbf{a}_{nn} \end{bmatrix} \rightarrow \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{n1} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{1n} & \cdots & \mathbf{a}_{nn} \end{bmatrix}$$

Matrix Operations (I)

Addition and subtraction: two matrices **A** and **B** are summed / subtracted by adding their elements at the same positions.

$$C = A \pm B$$
: $c_{ik} = a_{ik} \pm b_{ik}$ for $i = 1,...,m, k = 1,...,n$

Matrix Operations (II)

- Multiplication of a matrix with a scalar
 - A matrix **A** is multiplied with a scalar by multiplying every element of **A** with c.

$${\bf B} = {\bf c} \cdot {\bf A}$$
: $b_{ik} = {\bf c} \cdot {\bf a}_{ik}$ for $i = 1, ..., m, k = 1, ..., n$

Matrix Operations (III)

- Multiplication of matrices
 - The product C = AB of $(m \times n)$ matrix A with $(n \times p)$ matrix B is defined as

$$c_{ik} = \sum_{r=1}^{n} a_{ir} \cdot b_{rk}$$
 for $i = 1,...,m$, $k = 1,...,p$

- Pre-condition: numbers of columns of A = number of rows of B
- \neg Note: matrix multiplication is not commutative, i.e. $AB \neq BA$

Eigenvalues and Eigenvectors (I)

- Think of eigenvalues and eigenvectors as providing Summary of a large matrix
- They are used to reduce dimension space.
- If A is an $n \times n$ matrix, do there exist nonzero vectors \mathbf{x} in R^n such that $A\mathbf{x}$ is a scalar multiple of \mathbf{x} ?

A: an $n \times n$ matrix

 λ : a scalar (could be **zero**)

x: a **nonzero** vector in R^n

Eigenvalue
$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\uparrow \qquad \uparrow$$
Eigenvector

Eigenvalues and Eigenvectors (II)

• Example:

$$A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \quad \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$A\mathbf{x}_1 = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2\begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2\mathbf{x}_1$$
Eigenvector

$$A\mathbf{x}_{2} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = (-1)\mathbf{x}_{2}$$
Eigenvalue
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = (-1)\mathbf{x}_{2}$$
Eigenvector

Complex numbers (I)

Motivation: polynoms of n-th degree should have n zeros.

$$z^{2}-1=0 \Rightarrow (z-1)(z+1)=0 \Rightarrow z_{1}=1; z_{2}=-1$$

$$z^{2}=0 \Rightarrow z_{1}=0; z_{2}=0$$

$$z^{2}+1=0 \Rightarrow z_{1}=\sqrt{-1}; z_{2}=-\sqrt{-1}$$

Complex numbers (II)

Def.:
$$j = \sqrt{-1}$$

Imaginary unit (mostly named " i ")

$$z = x + j y \qquad x, y \in \Re$$

$$x, y \in \Re$$

Complex number

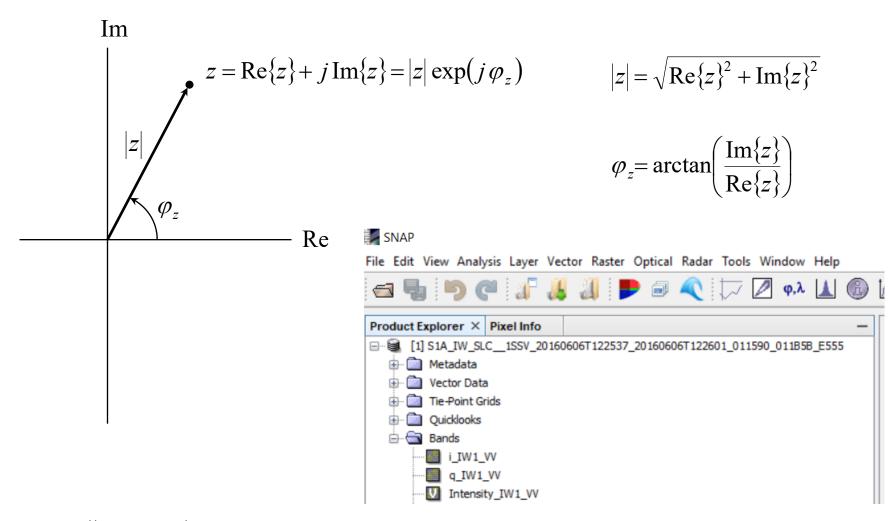
$$x = \text{Re}\{z\}$$

Real part

$$y = \text{Im}\{z\}$$

Imaginary part

Complex numbers (III)



Complex numbers (IV)

Complex conjugate

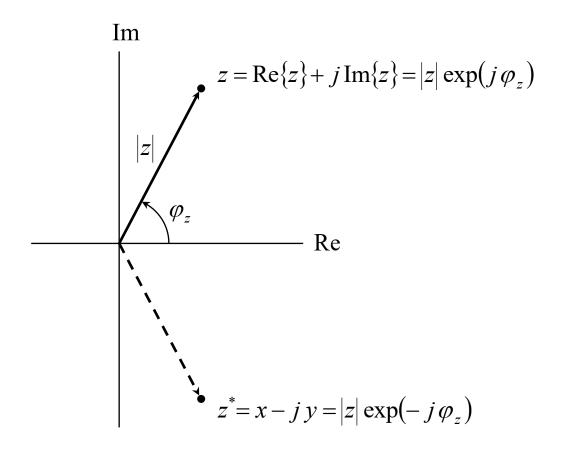
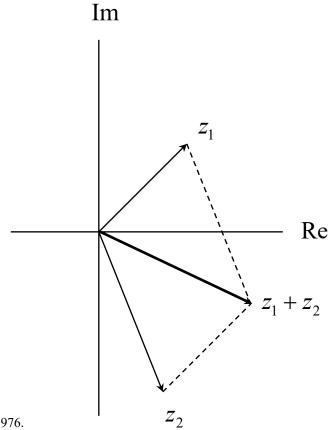


Image source: https://eo-college.org/

Complex numbers (V)

Summation: $z_1+z_2 = \text{Re}\{z_1\} + \text{Re}\{z_2\} + j(\text{Im}\{z_1\} + \text{Im}\{z_2\})$

Corresponds to vector summation:



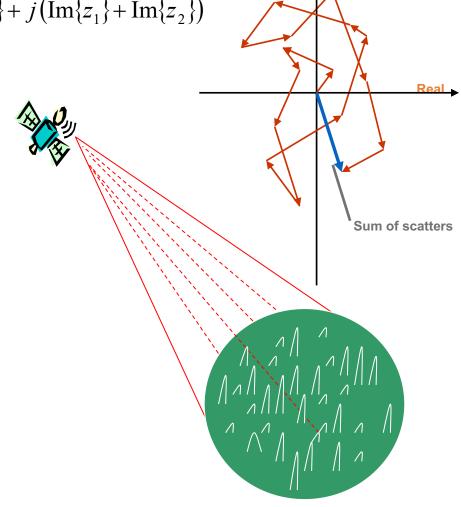


Image source: Goodman, 1976.

Complex numbers (VI)

Multiplication: $z_1 \cdot z_2 = |z_1| |z_2| \exp(j(\varphi_{z_1} + \varphi_{z_2}))$

$$z \cdot z^* = |z|^2$$

Life is a complex number!

It has a real part and an imaginary part!

Acknowledgment

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Natural Resources Canada Ressources naturelles Canada

Environment and Climate Change Canada

Environnement et Changement climatique Canada

